
Self-Supervised Task Discovery

Elias Wang
Department of Electrical Engineering

Stanford University
elias.wang@stanford.edu

Abstract

While large datasets, such as ImageNet, have propelled
the performance of deep neural networks, they are expen-
sive and time-consuming to curate. This has motivated the
interest in low-cost self-supervised tasks that can generate
general-purpose features, e.g. that support ImageNet clas-
sification, for the case of vision, without requiring manually
labeled data. We propose a framework for automatically
discovering a self-supervised task that results in powerful
visual features. Our approach uses a model, the proposer,
to generate the parameters that define the task. Training
a network, the solver, to solve this task results in metrics
about how good the task is. Using this metric as a reward
signal, we can then update the proposer to generate better
and better tasks. We apply our method to rotation predic-
tion, where the task is to recognize which rotation angle,
from a set, was applied to an image, and demonstrate that
the algorithm is able to find a set of angles that achieve
comparable performance to state-of-the-art self-supervised
methods.

1. Introduction
In recent years, there is rapid progress in computer vi-

sion with the use of deep convolutional neural networks
[18] (CNNs) for learning powerful image representations.
These CNNs are typically trained on a massive amount of
manually labeled data in order to learn high-level visual fea-
tures that transfer to a variety of tasks, such as object detec-
tion [9], semantic segmentation [20], or image captioning
[13]. However, this fully supervised method is limited by
the reliance on manually labeled data, which is expensive
and time-consuming to collect at scale.

This problem has sparked increased interest in devel-
oping methods to learn high-level visual features without
manual annotation of data. Some examples of these un-
supervised methods include, clustering based methods ([8],
[19]), the reconstruction based methods ([4], [21]), and gen-
erative probabilistic models ([10], [7]). Among them, is

the self-supervised learning paradigm that defines a pretext
task, which only uses the visual information present in the
images to provide a surrogate supervision signal for fea-
ture learning. For example, some self-supervised tasks in-
clude, colorization ([28], [17]), relative position ([5], [23]),
egomotion [2], and rotation prediction [3]. The reasoning
is that solving these tasks will constrain the CNN to learn
high-level image representations that can be useful for other
visual tasks. However, designing powerful self-supervised
tasks still largely relies on intuition and requires ample time.
Additionally, recent work has shown that combining multi-
ple self-supervised tasks almost always leads to improved
performance ([6], [22]), which suggests that the space of
good self-supervised tasks may be relatively large and opti-
mal points may be unintuitive.

We present a general framework for self-supervised task
discovery. Most self-supervised methods can be param-
eterized to encompass a broader range of tasks than the
one originally proposed. For example, for colorization, in-
stead of a priori deciding to use the Lab colorspace, we
could learn a (parameterized) function that takes the orig-
inal (RGB) image and outputs an image such that trying
to predict the last two channels from the first will produce
useful visual features. It is possible that, within this space,
there exists a function that will provide better results than
RGB-to-Lab. Ultimately, we would like a general function
that encapsulates all the current self-supervised task and
more, Fig. 1. Our approach uses a model, the proposer,
to generate the parameters of that function, which defines a
task. Training a network, the solver, to solve this task results
in metrics about how good the task is. Using this metric as a
reward signal, we can then update the proposer to generate
better and better tasks.

We apply our method to rotation prediction [3], where
the task is to recognize which rotation angle, from a set,
was applied to an image. Therefore, the goal is to find a set
of angles for the rotation task that produce general visual
features. We choose the rotation task since the search space
(finite number of continuous angles) is large enough to po-
tentially generalize, but small enough so that experiments
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Figure 1: Tasks generated by a general function G(·; Θ)
with parameters Θ that takes in raw, unlabeled images.
Specific task inputs and labels are shown for the case of
colorization and rotation. The question marks represent
the unknown inputs and labels that produce the best self-
supervised task.

could be run within reasonable compute and time limita-
tions. Our results demonstrate that the algorithm is able
to find a set of angles that satisfy the same properties as
described in the original paper [3] and achieve comparable
performance to state-of-the-art self-supervised methods.

2. Related Work
The problem of learning to discover an optimal state is

a standard formulation in reinforcement learning. In par-
ticular, Neural Architecture Search (NAS) [29] uses rein-
forcement learning to discover optimal hyperparameters for
neural networks. The work encodes the structure and con-
nectivity of a neural network in a variable-length string. It is
therefore possible to use a recurrent neural network to gen-
erate such a string. Training the network specified by the
string on the task of interest will result in an given valida-
tion accuracy. Using this accuracy as the reward signal, they
compute the policy gradient to update the controller. As a
result, in the next iteration, the controller will give higher
probabilities to architectures that receive high accuracies,
allowing the controller will learn to improve its search over
time. The idea of using some internal metric as a reward
has also been explored in various other contexts ([24], [12],
[16]). Our method is similar to the structure of NAS, but is
applied in a novel context. Instead of optimizing architec-
tural hyperparameters of a neural network, we aim to opti-
mize for the parameters that define a (self-supervised) task.

The search for a good self-supervised task is also related
to the concept of active learning, where an agent is opti-
mized to obtain optimal data. Traditionally, this is in the
context where there is abundant unlabeled data, limited la-
beled data, and the ability to label data. Then obtaining
optimal data means choosing maximally informative unla-
beled data that should be labeled [26]. From a developmen-
tal behavior point of view, it has been shown that babies act

on the world, generating data, in a way that enhances their
understanding of how it works ([11], [27]). A connection
exists due to the nature of how a self-supervised task also
defines the data that the network sees.

3. Methodology
Fig. 2 shows the framework for discovering an optimal

task. There is a continuous interaction between two com-
ponents, the proposer and the solver. The solver calculates
certain metrics for a given task and the proposer uses the
metrics to select better tasks. There are many choices for
possible metrics, but the metric used should be informative
of how well the task supports learning high-level visual fea-
tures.

Figure 2: Overview of the framework for discovering self-
supervised tasks

3.1. Solver

The input to the solver is a finite set of angles that define
a given rotation prediction task. The solver then trains a
CNN to solve the given rotation task, thereby computing
the desired metrics.

Fig. 3 shows an overview of the rotation prediction task.
A given task is defined by a set ofK angles, Θ = {θk|Kk=1},
with corresponding geometric transformations R(·|θk) that
results in a rotated image Xk = R(X|θk), when applied
to image X . The CNN model F (·) is given a transformed
image Xk∗ as input and assigns a probability distribution
over the possible transformations:

F (Xk∗ ;φ) = F k(Xk∗ ;φ)|Kk=1 (1)

where F k(Xk∗ ;φ) is the predicted probability for rota-
tion by angle θk and φ are the learnable parameters of the
model F (·).

Finally, given a dataset of N training images D =
Xi|Ni=1 we learn the CNN parameters φ by solving:
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min
φ
loss(D,φ) (2)

where loss(·) is defined as:

loss(D,φ) = − 1

N

N∑
i=1

log(F k
∗
(Xk∗

i ;φ)) (3)

Figure 3: Overview of the rotation prediction task, from [3]

The optimization procedure produces a sequence of data
on which the model was trained D0,...,t and model param-
eters φ0,...,t. With these, we introduce a metric function
Mt(D0,...,t, φ0,...,t; Ω) that quantifies aspects of the task at
each time step t, where Ω represents possible parameters
or additional inputs. Some examples metrics include, rota-
tion prediction accuracy, training loss value, and area un-
der the curve (AUC) of the loss. While any of these could
potentially be used, we decided on the AUC metric since
it captures information about the whole training trajectory.
Therefore, our metric function takes the following form:

Mt(D0,...,t, φ0,...,t;ω) =

t∑
τ=1

L̂τ−1 + L̂τ
2

(4)

where L̂ = S(L;ω) is the smoothed loss with a smooth-
ing function S(·;ω) and Lt = loss(Dt, φt) is the loss at
time t.

Therefore, the solver can be described as a mapping from
Θ to MΘ

t = Mt(D0,...,t, φ
Θ
0,...,t;ω) where φΘ are the pa-

rameters learned solving the task defined by Θ.

3.2. Proposer

The proposer takes a task (e.g. a set of angles) with the
corresponding metric values (e.g. AUC) and outputs new
tasks. Since the metric values serve as a proxy for the power
of the task, the proposer aims to propose tasks that optimize
the metrics.

In this work, we accomplish this in a two steps. First
we build a model P (·;ψ), with parameters ψ, to predict the

metric MΘ
t . Next, we define a policy πP that samples new

tasks explicitly from the metric model as follows:

πP (Θ) ∼ exp(βP (Θ;ψ)) (5)

where the hyperparameter β, or inverse temperature, is
used to control the exploration-exploitation trade-off.

An alternative to the two step approach would be to build
a single model that directly generates new tasks, e.g. with
policy gradients. We do not adopt this method for simplicity
and it is left for future work.

4. Experiments & Results
We provide an overview of the rotation task landscape

by analyzing the relationship between the choice of angles
to predict and the resulting representations that are learned.
First, we start by reproducing the RotNet results. Then we
perform a series of experiments by solving rotation predic-
tion with different sets of angles. We demonstrate that met-
rics obtained from the training, such as AUC, correlate with
the performance of the learned visual features on ImageNet
classification. Finally, we apply our problem search frame-
work to discover effective rotation tasks.

4.1. Rotation Prediction

4.1.1 RotNet Implementation

We use the RotNet architecture described in [3], which is
based on AlexNet[15] with minor modifications. The final
fully connected layer modified to produce the same number
of outputs as angles in the task, there is no local response
normalization, and there is batch normalization after every
linear layer. We train the network using SGD with momen-
tum 0.9, and weight decay 5e − 4 for 30 epochs with an
initial learning rate of 0.01 and decayed by a factor of 10
after 10 and 20 epochs. We also feed all rotations of the im-
age simultaneously within the same mini-batch, which was
found to improve performance in [3]. This means that the
size of each mini-batch is actually a factor of the number
of angles in the task larger than the number of unique unro-
tated images. For the original 4 angle case with batch size
192, this would be 768 = 4 × 192. We keep this num-
ber constant in our experiments with different number of
angles. Unlike the original paper, since we rotate images
by angles that are not multiples of 90 degrees, there will
be empty spaces (filled with zeros) in addition to the low
level interpolation artifacts. We want to focus on the visual
artifacts so a circular mask was applied to the images.

To evaluate the generalization and power of the self-
supervised task, we train a classifier to perform the Ima-
geNet classification task using the learned features. Fol-
lowing the method used in [23], we freeze the weights in
conv1-4 and retrain the following layers, i.e. conv5, fc6,
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fc7, and fc8. We use the same hyperparameters as in the ro-
tation task, except we use a batch size of 256 for this case.
The top-1 ImageNet classification accuracy is computed on
the held-out validation set. We verified that we were able to
reproduce the original result of 50.0% top-1 accuracy (we
obtained 51.9%).

4.1.2 Rotation Artifacts

To understand the nature of the effect of the rotation arti-
facts, we try various sets of angles with different levels of
artifacts present. We plot the confusion matrix to visual-
ize the errors the models are making. The general result of
these experiments can be summarize by a couple examples.
The first is the case where the set of angles (in degrees) is{
x + 90n | x ∈ {0, 45}, n ∈ {0, 1, 2, 3}

}
. We see that

the two values for x create two subsets, each of which con-
tains angles that are multiples of 90 degrees apart from the
others. Within each subset there are the same artifacts, but
these differ between the subsets. We see this phenomenon
reflected in the block diagonal structure of the confusion
matrix in Fig. 4. Another example is the case where the
angles are {0, 36, 108, 216}. Based on the result of the pre-
vious example, we would expect that the rotations by 36 and
216 degrees to be confused with each other while the other
rotations can be easily distinguished from the others using
the visual artifacts. As shown in Fig. 5, this is exactly the
result we obtain. There is almost perfect accuracy in clas-
sifying rotations by 0 and 108 degrees with accuracies over
99.9%.

4.2. Choosing a Metric

We then ask whether performance on the rotation task
predicts the performance of the learned representations on
ImageNet classification. Another way to think about this
is that using artifacts allows the network to perform better
in rotation classification without actually learning power-
ful visual representations. To do this, we train RotNet on a
variety of tasks ranging from 2 to 8 angles, including ran-
dom sets of angles and the original set, with different levels
of artifacts present in each. We compare how well differ-
ent metrics for performance correlate to the ability of the
learned representations to transfer to ImageNet classifica-
tion. We first looked at the final validation rotation classi-
fication accuracy as the metric, Fig. 6a, which is able to
separate out the harder problems (i.e. lower accuracy, fur-
ther to the left), but falls short for the easier problems. This
ceiling effect where multiple tasks reach the same, almost
perfect accuracy, but result in different performances on Im-
ageNet is clearly shown by the points in the bottom right of
Fig. 6a. Therefore, we propose to use the area under curve
(AUC) of the loss as an alternative. The AUC is calculated
on the smoothed loss, and we use a moving average filter

Figure 4: Confusion matrix for the 8-way rotation classi-
fication task with angles

{
x + 90n | x ∈ {0, 45}, n ∈

{0, 1, 2, 3}
}

on validation images.

Figure 5: Confusion matrix for the 4-way rotation classifi-
cation task with angles {0, 36, 108, 216} on validation im-
ages.

with kernel length 100 for all the experiments. The ratio-
nale is that since the AUC is computed from the whole loss
trajectory it may provide finer resolution than the rotation
accuracy. Fig. 6b shows that this is indeed the case and
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there is a nice correlation between the AUC and ImageNet
transfer performance at both ends of the scale.

(a) Rotation Accuracy

(b) AUC

Figure 6: Each point represents a different set of angles used
in the rotation classification task. The x-axis is the final
validation rotation classification accuracy (top) or the AUC
at 6000 steps (bottom). The y-axis is the best ImageNet
top-1 accuracy when the layers after conv4 are trained. The
dotted red line denotes baseline performance when conv1-4
are initialized with random weights.

Since the framework relies on doing multiple passes of
training on the rotation task, it is critical that the metric can
be quickly determined during training. To investigate what
a sufficient number of steps to train, we plot the correlation
between AUC and ImageNet top-1 accuracy as a function
of the number of steps. We see the results in Fig. 7 and the
number of steps can be chosen to reach the desired trade-off
between accuracy and speed. While there is a sharp increase
in correlation up until about 6000 steps, it is worth noting
that the correlation is still quite good for fewer steps.

One thing to note is that we do not take into account the
degenerate cases when using AUC as the metric. An exam-

Figure 7: Plot of correlation between AUC and ImageNet
top-1 accuracy versus number of steps for AUC.

ple of a degenerate case for the rotation task is when two
angles are the same, which results in an unlearnable prob-
lem with a high AUC. However, even though the AUC is
high, these are regions we want to avoid. A possible rem-
edy would be to combine the rotation accuracy and AUC
together in the metric, since the rotation accuracy will be at
chance for these cases. A more general approach is to have
a model of the inverse problem, who’s loss would give an
estimate of how degenerate the problem is. This is left for
future work.

4.3. Learning the Metric Map

Here we investigate the ability of different classes of
models to learn the metric map for the rotation task with
two angles. To generate the training data, we sampled 800
points in [0, 360]2 and computed the AUC at 6000 steps for
each.

The initial model was a simple multi-layer perceptron
(MLP). The input is a vector of the two angles in the task
and the label was the AUC. We use Adam [14] to mini-
mize the l2 loss between our model’s outputs and the la-
bels. A thorough hyperparameter search was conducted
over the learning rate, batch size, model depth, and hidden
dimensions. However, no model was able to successfully
capture the data. The sparse manifold on which the hard
problems lie is reflected in the significant class imbalance
in our dataset. To alleviate this we also tried including an
additional term in the loss that would weight examples with
high labels more, which did not lead to significant improve-
ments.

In search of a better model class for learning this land-
scape, we chose Gaussian processes (GP). The GP with
RBF kernel was trained using the scikit-learn Python pack-
age [25]. We can see in Fig. 8 that the GP is able to capture
all the significant peaks. The strong peaks along the di-
agonal correspond to degenerate problems where both an-
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gles are the same. As expected, there are also other slightly
lower peaks that correspond to problems where the two an-
gles are multiple of 90 degrees apart. The slight checker
pattern is a result of the details in TensorFlow’s [1] rotate
function. For angles close to multiple of 90 degrees, there
is a larger deviation up to which a rotation by that amount
will still result in the same image.

Figure 8: Plot of metric map learned by GP. Each axis rep-
resents one of the two angles in the task and the color cor-
responds to the predicted AUC.

4.4. Task Discovery

We apply our task discovery framework to the subset of
problems contained in the rotation task. Specifically, our
task search space is a pair of angles (i.e. K = 2), where
each angle can take a value from the continuous range
[0, 360].

4.4.1 Implementation Details

Our implementation made use of distributed TensorFlow in
order to parallelize the tasks across GPUs on a cluster. The
tasks were divided into three jobs: parameter server, pro-
poser, and solver. The parameter server is responsible for
maintaining the two FIFO queues for proposer inputs (met-
rics queue) and solver inputs (task angles queue). The pro-
poser is composed of two tasks, one for each step described
in 3.2. The first task trains the GP model described in 4.3
by dequeuing from the metrics queue, with a batch size of
2. It adds these values to its history of inputs and retrains
the model with the full history. The second task performs
sampling based on Eq. 5, where β follows an exponential
decay with a decay rate of 0.97 and initial value of 1 and

the model P is the one model recently trained. The sam-
pled tasks are continuously fed into the task angles queue,
removing the oldest element in the queue when necessary.
A solver task obtains the most recent problems from the task
angles queue and uses the AlexNet based architecture and
training procedure described in 4.1 to compute the AUC.
When the training is complete, the solver enqueues the task
angles with its corresponding AUC into the metrics queue
before repeating. The solver task is the most computation-
ally intensive part of the procedure so several choices were
made to improve efficiency. The first is using 64x64 im-
ages instead of the standard 256x256 size, which improved
training speeds by about 4x normally but only 2x in the dis-
tributed implementation. We also only train for 500 steps,
which we found to be adequate. The main benefit of the dis-
tributed implementation is the ability to scale the number of
solver tasks to the amount of GPU resources available eas-
ily. For our experiments we used 5 solver tasks across 3
GPUs, trained overnight.

4.4.2 Results

Our method is able to converge on a set of angles 90 degrees
apart, which, as demonstrated in 4.1.2 and 4.2, results in a
strong self-supervised task. Fig. 9 shows the trajectory of
metric maps learned by the GP. In Fig. 9a we see a mostly
flat posterior since only 10 points have been sampled and
none of them have a comparable AUC to the hardest prob-
lems. We see a gradual increase in the number of peaks
as well as the appearance of several more significant peaks.
For example, in Fig. 9c, there are major peaks around (55,
235) and (180, 270). By the end, after 200 steps, the algo-
rithm converges to a single task, Θ = {179.7, 270.1}. The
right-hand side of Fig. 9 illustrates the effect of the temper-
ature decay in our sampling policy. The blue dots represent
the samples that are chosen at the given time step. The rela-
tively high temperature in the beginning allows for adequate
exploration. By 50 steps, Fig. 9b, we can see that the sam-
ples are already starting to concentrate around the peaks. At
step 100, the sample are concentrated at a single peak and
even more so at step 200.

We then train the self-supervised rotation task with these
angles and evaluate the learned representation on ImageNet
classification, which obtains a top-1 accuracy of about 49%
on ImageNet, demonstrating the effectiveness of these an-
gles for the self-supervised rotation task. This is not unex-
pected since we also verified that images rotated by 179.7
and 270.1 degrees are the same images rotated by 180 and
270 degrees, respectively.

5. Conclusion
Just as the difficulty of designing powerful neural net-

work architectures inspired the development of Neural Ar-
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(a) Step 25 (50 samples)

(b) Step 50 (100 samples)

(c) Step 100 (200 samples)

(d) Step 200 (400 samples)

Figure 9: Plot of metric map learned at different points in
time (left) with samples at the corresponding temperature
overlaid as blue dots (right). Each axis represents one of
the two angles in the task and the color corresponds to the
predicted AUC.

chitecture Search, the success of the multitude of self-
supervised tasks motivates the utility of a problem search
algorithm. In this work, we present a method for searching
a task space and demonstrate its effectiveness in the case of
a two angle rotation prediction task. However, our method
is fully general given any reasonable parameterization of the
task space. This suggests that given a sufficiently large task
space, our method should be able to find a self-supervised

Figure 10: Plot of metric map learned at step 200 zoomed
in to highest peak at roughly (180, 270).

task that performs better than any current method. The same
framework can also be viewed from the perspective of ac-
tive and continual learning. So far, we only consider the
task defined by the final set of parameters our algorithm
converges on. However, we can also take the task to be a se-
quence of tasks corresponding to the parameters generated
during the search trajectory. In this case, our method be-
comes a general approach for automated curriculum learn-
ing. These directions are left for future work.
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