
Deep Action Conditional Neural Network for Frame Prediction in Atari Games

Elias Wang
Stanford University

elias.wang@stanford.edu

Atli Kosson
Stanford University

akos@stanford.edu

Tong Mu
Stanford University

tongmu@stanford.edu

Abstract

In many problems in computer vision and video frame
prediction, such as in robotic control or self driving cars,
future frames are not only dependent on past frames, but
also on external actions. We study this problem by looking
at video frame prediction in the context of Atari 2600 video
games where future frames are dependent on past frames
as well as actions performed by the players. Based off of
previous work such as [12] and [6] we implement a convo-
lutional feedforward model for predicting future frames and
rewards as well as a baseline multi-layer perceptron (MLP).
We test various training schemes including using an autoen-
coder to improve prediction clarity and using different loss
functions such as the l2 loss, the l1 loss, and the Struc-
tural Dissimilarity (DSSIM). We generate data by collecting
frames and rewards from a Deep Q Network (DQN) trained
to play the game. We found that both quantitatively and
qualitatively the convolutional feedforward model achieves
better results than the MLP.

1. Introduction
Observing a scene, humans can often predict what will

happen over the next couple of seconds. This capability
requires some degree of understanding of the content and
dynamics of the scene. Video frame prediction is one way
to model this behavior and could be an interesting way for
unsupervised feature learning. Additionally, video frame
prediction can have many other important applications such
as in object trajectory prediction and in self driving cars. In
many applications of video prediction, future frames are not
only dependent on previous frames, but on external inputs
or features as well. For example the next observed frame
for a robot depends on its input controls.

We study this problem of actioned conditioned video
prediction through video frame prediction in the classic
Atari 2600 video games. In this setting future frames are
dependent on past frames as well as actions performed by
the players. We use OpenAI Gym [1] along with a Deep Q
Network [10, 11] trained to play the game to collect data and

frames from various Atari 2600 video games. We process
the data by separating the data into examples which consist
of five sequential frames, four as input and the fifth as the
target, along with the actions and rewards at each frame.
We make predictions of the next frame by inputing this data
into a convolutional feedforward model with branches for
predicting rewards and the end of the game, a baseline mul-
tilayer perceptron, and a model which uses an autoencoder
to intialize the weights of the network. We tried the au-
toencoder as an alternative to the computationally expen-
sive curriculum training done in [12]. During training we
experimented with different loss functions in an attempt to
achieve better results.

2. Related Work

Recently, there has been much work in video frame pre-
diction. Michalski et al.[9], propose a framework for pre-
dicting time series data using recurrent networks. Srivas-
tava et al. [16], use LSTM networks to represent video se-
quences for various tasks including video frame reconstruc-
tion and prediction. Mathieu et al. [8] proposed multiple
strategies, including a multi-scale framework, using adver-
sarial training, and a novel loss function using image gra-
dients to achieve better results in frame prediction. Xue et
al. [23] propose a probabilistic model for the prediction of
future frames, therefore resulting in the ability to sample
multiple possible future frames. Walker et al. [18] propose
the use of a variational autoencoder to predict the trajec-
tories of pixels in image sequences. Vondrick et al. [17]
propose a framework that uses video data with deep learn-
ing and recognition algorithms to anticipate actions and ob-
jects. Ranzato et al. [14] adapt methods from language
modeling to fill missing video frames and predict future
frames. Wu et al. [22] propose a generative model, the
term ”Galileo”, to predict physical events from video. More
recently, Lotter et al.[7] propose a neural network architec-
ture they term ”PredNet” to predict future frames in video
sequences. While these works are very powerful for pre-
dicting future frames from past frames, they do not account
for external features like player actions in Atari games that
could affect the future frames.

1

There has also been work done on video frame pre-
diction that incorporates external actions. Oh et al.[12]
propose two deep learning architectures to predict future
frames conditioned on actions where actions data is mul-
tiplicatively factored in. Additionally Finn et al.[3] pro-
pose three deep learning frameworks composed of convo-
lutional LSTMs and convolutional layers for predictions on
real world videos conditioned on actions. Leibfried et al.
[6] build on the work of Oh et al. by adapting the model to
predict future rewards as well.

There has also been much work done on the optimal loss
functions for image prediction using convolutional neural
networks. Wang et al. [19] propose a new metric to measure
the similarity between two images, the structural similarity
(SSIM) which attempts to overcome the shortcomings of us-
ing the traditional MSE by better mimicking the human vi-
sual system. Wang et al. [21] builds on the SSIM metric by
proposing a new metric, the multi-scale SSIM (MS-SSIM)
that considers the images at multiple scales. Zhao et al.
[24] test the effects of various loss functions, including the
SSIM and MS-SSIM, in training neural nets and found that
a linear combination of the MS-SSIM and the L1 loss was
the loss function that gave the best results for their applica-
tions. We hypothesize that examining the effect of various
loss functions, similar to the procedure of Zhao et al. on the
frame and reward prediction of Oh et al. and Leibfried et al.
could improve the results.

Finally predicting future rewards with supervised learn-
ing has recently been shown to be an effective alternative
to traditional temporal difference methods in reinforcement
learning in environments with dense rewards. Dosovitskiy
and Koltun [2] show that a predictive network can outper-
form state of art reinforcement learning algorithms on vari-
ous tasks in the classical first-person shooter game Doom.

3. Methods
3.1. Problem Statement

We consider a setting where we have a game with a good
visual representation that can be modeled as Markov Deci-
sion Process. We focus on the Atari 2600 games Pong. At
each time t we observe a frame xt, pick an action at and
then observe the resulting frame xt+1, reward rt+1 and a
boolean denoting whether the game is over or not dt+1.

We wish to find a function

f : x1:t, at → xt+1, rt+1, dt+1

that predicts the next frame (at time t + 1) from previous
frames x1:t. In practice we might only use a few preceding
frames for the prediction.

Having accurate estimates of future rewards and when an
episode ends could be useful in a number of ways for model
based reinforcement learning. It could allow for planning

over multiple steps into the future which might also benefit
model free agents. By running the agent on the predicted fu-
ture frames the predictive network might be able to predict
mistakes that the agent is about to make and preemptively
take control to prevent the mistake from happening. This
could be useful for improving the performance of a fully
trained agent or used to speed up training by reducing the
data necessary.

3.2. Dataset Generation and processing

Our model is trained on a sequence of transitions ob-
served when training a Deep Q Network (DQN) with the
structure described in [10] and [11]. We trained a DQN
agent1 on Pong with a epsilon greedy strategy for over 5
million steps. Over the first million steps, the epsilon de-
cays from 1 to 0.1. The training continues for another 4
million frames after that. The DQN makes a decision every
4 frames. We save the first frame and sum the reward over
each sequence.

3.3. Model

Core model

Our core model is inspired by [12], and is shown in Figure
1. The feed-forward encoding model consists of four con-
volutional layers followed by a fully connected layer. The
resulting features are then combined multiplicatively with
the input actions and fed into the decoding model, which
consists of a fully connected layer and four deconvolutional
layers that reconstruct the predicted frame. Oh et. al. also
suggested a recurrent version of this architecture where the
images are fed in one at a time and processed with a LSTM.

The incorporation of multiple input frames to the feed-
forward model was done by stacking four sequential image
frames along the depth dimension and feeding this as the
input to the model. In this way, each filter is able to extract
both temporal and spatial information. It is possible to use
more or less input frames, but if the dynamics are relatively
Markovian, then more frames would not necessarily help.
Therefore, we use the standard four frames as commonly
used in video prediction literature.

The feed-forward encoding model attempts to extract
relevant high-level features from the stacked input frames.
This is similar to how later layers (but typically not the last)
of AlexNet [5] are used as generic visual features for other
tasks. While AlexNet consists of five convolutional lay-
ers and two fully connected layers (before the final output
layer), our model uses only four convolutional layers and
one fully connected layer, each of which is followed by a
ReLU nonlinearity. While this reduced capacity may seem
problematic, the images from Atari games are much simpler
than the ones in ImageNet [15]. Additionally, larger filter

1Based on CS234 homework code

2

Figure 1: Our core model with reward and end of episode prediction

sizes are used in our model, which may partially alleviate
this concern.

Next we combine the encoded features with the action
through a multiplicative action-conditional transformation,
as proposed by [12]. This can be expressed by Equation
1, where hdec is the output of the action-conditional trans-
formation and the input to the decoding model, henc is the
output of the encoding model, a is a one-hot vector, which
essentially acts as an embedding lookup, and the W ′s are
trainable weights.

hdec =W dec (W enchenc �W aa) + b (1)

We apply the standard process of deconvolution for gen-
erating the predicted image from the decoded features, hdec.
The decoding model mirrors the encoding model, and con-
sists of a fully connected layer followed by four deconvolu-
tional layers, with ReLU activations as before. The purpose
of the fully connected layer is to reshape the decoded fea-
tures into the desired ouput shape. The result of the decod-
ing is the final predicted frame.

The model is trained by minimizing the l2 loss between
the predicted frame and the next ground truth frame, as de-
scribed in Equation 2. Where xi is the training data and x̂i
is the predicted image for i = 1, . . . , N for a dataset of size
N .

Li =
1

2
‖x̂i − xi‖2 (2)

In addition we also add a feed-forward network that takes
in the features extracted with the encoding network and
predicts the reward and done flag associated with the next
frame. We will consider basing this network off the archi-
tecture described by Dosovitskiy and Koltun [2], which is
split into two stems, similar to what is used for the dueling
networks by Wang et al [20].

Alternate Loss Functions

The L2 loss has many shortcomings, for example it is very
sensitive to outliers and it does not capture how the human
visual system perceives images. As a result, we experi-
mented with training our model by minimizing other loss
functions as motivated by Zhao et al. [24].

The L1 loss is the sum of the absolute differences be-
tween the predicted values and the true values. Compared
to the L2 loss, the L1 loss is more robust to outliers as it
weights them less.

Li = |x̂i − xi| (3)

However we were not able to obtain better results using the
L1 loss as compared to the L2 loss. We hypothesize this is
caused by the subtleties in training with the L1 loss.

Additionally, we attempted to use the Structural Simi-
larity and Multi-Scale Structural Similarity (SSIM and MS-
SSIM) metrics as proposed by Wang et al. [19], [21] as loss
functions by using the Structural Dissimilarity (DSSIM).
The SSIM metric measures the similarity between two im-
ages and better captures how the human visual system per-
ceives images by considering the metrics of local lumines-
cence, structure, and contrast. The MS-SSIM expands on
the SSIM and considers the SSIM metric at multiple scales
by iteratively applying downsampling and low pass filtering
to the image. We use the open source tensorflow implemen-
tation SSIM and MS-SSIM provided by Neal Wu 2.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4)

DSSIM(x, y) =
1− SSIM(x, y)

2
(5)

We were also not able to obtain better results with these
metrics. This was due to the fact the SSIM and MS-SSIM

2https://github.com/tensorflow/models/blob/master/inception/inception/slim/losses.py

3

Figure 2: MLP model

metrics themselves have many parameters such as window
size and window type used to define locality. Due to the
long times needed to train the models, we were not able
to tune these parameters to achieve optimal performance
within the time constrains.

Reward prediction

We experimented with adding branches to our model to
predict rewards and whether or not the next frame corre-
sponds to the end of the episode. We do this by adding
a branch from the action conditioned encoding layer that
goes through two fully connected layers before two soft-
max branches corresponding to the reward and episode end.
We later discovered that this kind of reward prediction had
already been implemented by [6] although they do not pre-
dict the end of the episode. Predicting the end of episode
could be useful in similar ways as reward prediction.

MLP baseline model

We also test out model against a standard multi-layer per-
ceptron (MLP) baseline, which consists of 4 fully connected
layers as suggested by Oh et al. The MLP takes in one frame
as input and actions are incorporated by concatenating them
onto the output of the second fully connected layer.

4. Datasets and Features

When collecting the data generated by the DQN, we save
each frame that has an action. Each frame is stored in full
resolution (210 × 160 × 3) along with the corresponding
action and reward.

Each example consists of five frames; four frames as in-
put and one frame as the ground truth output. For generat-
ing the datasets, we first split all the playthroughs randomly
in a 70-15-15 split for the training, validation and testing
datasets. Because of the large size of the dataset, consisting

of approximately 5 million frames, for each split we ran-
domly sample over all examples and retrieve a portion of
the examples. The training set consists of 131,072 exam-
ples (of 4 input frames and 1 target frame) which results in
655,360 frames in total. The validation and testing sets both
consist of 16,384 examples, or 81,920 frames. Examples of
single frames are given in figure 3. Additionally, we cal-
culate the mean image for each split over all the frames in
that split and pre-process the image data by subtracting the
mean and normalizing by 255 before feeding the data into
the models.

5. Experiments and Results

5.1. Core model and variations

Network architectures

The four encoding convolutional layers consisted of 64
(8 × 8), 128 (6 × 6), 128 (6 × 6), 128 (4 × 4) filters fol-
lowed by the fully connected layer with 2048 hidden units
[12]. The three weight matrices,W enc,W a, andW dec, and
the action-conditional transformation all have an output di-
mension of 2048. The reshaping fully connected decoding
layer has hidden dimension 11264 (11× 8× 128). Finally,
the decoding deconvolutional layers have 128 (4 × 4), 128
(6× 6), 128 (6× 6), 3 (8× 8) filters.

The loss was optimized using the Adam optimizer (β1 =
0.9, β2 = 0.999) [4] with a learning rate of 10−4 for 105

steps with decay. We tested many learning rates to find this
optimal one. The convolutional and deconvolutional lay-
ers were initialized using Xavier initialization and the fully
connected layers for the encoded features and actions were
initialized from a random uniform distribution of [−1, 1]
and [−0.1, 0.1], respectively. Many of these hyperparam-
eters were adapted from [12], with some adjustments based
on our specific dataset and model 3.

3Model structure based off Stanford CS224N homework code

Figure 3: Examples of frames from the game Pong.

4

Figure 4: Example of 5-step sequential prediction with core
model. Left: Predicted image Middle: Ground truth image
Right: Difference

Core model predictions

Although the model was trained on one step prediction, we
wanted to see how well it performed on multi-step sequen-
tial prediction. This is where we feed in the model’s pre-
diction as an input for the next time step. In this case, for
the fifth prediction step, none of the input frames are from
the actual data, but instead are from the model’s prediction.
Figure 4 shows the results of this experiment. While the
predicted images are not as sharp as the ground truth im-
ages, not too surprisingly, we can see that the ball, moving
from top-left to bottom-right, and the enemy paddle, mov-
ing from top to bottom, relatively track the movements of
their counterparts in the ground truth images. The move-
ment of the agent’s paddle is less significant, but we can
also see that the errors are small there as well.

(a) MLP prediction

(b) Autoencoder transformation

Figure 5: Example of prediction with the MLP model and
an encoding decoding transformation for the autoencoder
(using the target frame as the input). Left: Predicted image
Middle: Ground truth image Right: Difference

Hyperparameter search

We performed a brief hyperparameter search over the learn-
ing rate, learning rate decay, and hidden dimension of the
fully connected layers. Since the ball is relatively small and
occurs in many locations, we hypothesized that increasing
the dimension of the feature representations would allow the
network to have more capacity to capture the positions of
the ball. However, there were no noticeable improvements
over values provided in [12].

5.2. MLP baseline model

The baseline MLP has four fully connected layers with
dimensions 400, 2048, 2048, and 400. The action was in-
corporated by concatenating it onto the second fully con-
nected layer.

MLP model predictions

The prediction from the baseline MLP model is qualita-
tively worse than the feedforward model. As shown in fig-
ure 5a, the predicted paddles are very blurry and completely
in the wrong location. Additionally, the ball is not predicted
at all.

5

5.3. Reward prediction

In Pong we were able to predict rewards with some lim-
ited success. We seemed to be able to predict positive re-
wards with a much higher F1 score (around 0.8) than nega-
tive rewards (0.2). There are likely two issues that cause
this. First, sequences with rewards are very rare in the
dataset compared to sequences without a reward. Oversam-
pling the reward sequences might fix this but could cause
overfitting in the frame prediction because the frames asso-
ciated with rewards look similar in many ways. Training
the reward branch with the rest of the weights fixed could
also be a solution. Liebfried et al. [6] encounter similar dif-
ficulties but fix it by using a Taylor approximation for the
cross entropy loss, but they are looking at different games
which could have a very different distribution of rewards.
The second issue is an imbalance in the dataset it self. The
DQN agent seems to converge to a certain policy in the later
stages of training. This results in sequences of frames that
occur disproportionally in the dataset which can also lead to
overfitting for certain types for frames. The end of episode
prediction has similar difficulties, likely because it is a rare
event in the training data.

5.4. Autoencoder initialization

We were interested in getting an upper limit for the how
well the models could perform so we modified the model
to work as an autoencoder, only taking in a single frame
and with the same frame as the target. This structure could
almost perfectly restore the images, with occasional small
errors in the location of the ball.

Since the outputs from the autoencoder (see figure 5b)
were much clearer than the outputs of our predictive model
we decided to try to use the weights of the autoencoder to
create a better predictive model. Our reasoning was that
since the autoencoder could already encode and restore the
images that we would only need to train a small predic-
tive network in the middle that would take the encoding of
the previous frames and calculate the encoding of the next
frame which could then be decoded with high quality giving
a sharper image than our core model. The model used can
be seen in figure 6.

Unfortunately we could not get good performance out of
this model. We tried fixing the weights of the encoding and
decoding layers and only training the middle layers. This
resulted in a loss that would not decrease significantly over
the various learning rates that we tested. We also tried let-
ting the model train all the variables, this did not lead to
significantly better results than the core model.

This could be because the autoencoder does not learn in-
tuitive features in the image. It seems to have multiple rep-
resentations for the ball for instance and the same could be
true for the paddles. This would probably make the transfor-
mation from the encoded input to the target output encoding

Table 1: Quantitative Comparison of Models. ’Echo’ corre-
sponds to just outputting the last input frame as the predic-
tion and serves as a control. ’Autoencoder same’ is another
control in which an autoencoder with the structure of our
model is given the target image and simply has to reproduce
it.

Loss MLP Feedforward Echo Autoencoder same
L1 138.4 74.8 78.6 13.4
L2 11.7 11.1 27.6 0.276

much more complicated especially because to predict the
network could need to access different representation of the
objects depending on where they are.

5.5. Quantitative Evaluation of Models

To quantitatively evaluate the performance of the mod-
els, we compare the average L1 and L2 difference between
the predicted image and the true image for the MLP, feed-
forward, and Autoencoder models on the test dataset in ta-
ble 1.

We define the Average L1 and L2 differences between
the predicted next image x̂i and true next image xi over n
test examples as:

L1 =

∑n
i=1 |x̂i − xi|

2n
(6)

L2 =

∑n
i=1‖x̂i − xi‖2

2n
(7)

From the quantitative results, we can see that the Feed-
forward model performs significantly better in terms of L1
loss compared to the MLP. The ’Echo’ autoencoder gives
results with an L1 loss similar to the feedforward network.
The Autoencoder same gives much better results as ex-
pected as it simply reproduces the input image. L1 loss as
a quantitative evaluation metric is appropriate as it is more
robust to outliers and weights everything equally.

6. Conclusion and Future Work
We create a dataset of the game Pong, using a DQN

agent, for the task of action-conditional video prediction.
We found that the feedforward model proposed in [12] was
able to perform relatively well on a short multi-step predic-
tion task, on a previously untested game, Pong. While they
propose a curriculum training, where the model is trained
to predict an increasing number of future frames, we sought
alternatives that would be less computationally intensive. In
their formulation, they trained for a million steps for each
phase, with three phases in total.

We propose to initialize the network with the weights
learned by training an autoencoder. While the autoencoder

6

Figure 6: Autoencoder initialization. The network on top is an autoencoder that is trained on with the target frame as an
output. After the autoencoder is fully trained the encoding and decoding layers are used to initialize a predictive model.

was able to train very well, the various methods of using the
learned weights to bootstrap the video prediction training
did not show significant improvements. This may support
the conclusion in [12], that the curriculum approach is nec-
essary for stable training. However, it could also be possible
that better results could be obtained with a better dataset.

The DQN agent seems to be prone to converging to a
single rigid policy when trained on Pong, perhaps due to
the limited stochasticity of Pong. This causes a number of
imbalance issues with the dataset. This could likely be ad-
dressed to some extent by training with more stochasticity,
a higher final ε value or using different exploration strategy
such as the randomized value functions proposed by Osband
et al. [13].

In the future we would be interested in running the pre-
dictive network and the DQN agent in parallel. Even after
5 million steps of training on Pong the DQN agent will still
make mistakes. If the predictive network can accurately
predict future frames and rewards we could simulate the
next couple of steps of the DQN agent at every time point.
If we predict a mistake, which coorespond to negative re-

wards in Pong, we could then try to search for a sequence
of actions (again through simulation with our predictive net-
work) that will prevent the mistake. After the mistake has
been averted the DQN agent would resume control. If the
training time for the predictive network could be reduced it
would also be interesting to train both networks in parallel
and see whether this sort of intervention could speed up the
learning of the DQN agent.

References

[1] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba. Openai gym, 2016.

[2] A. Dosovitskiy and V. Koltun. Learning to act by predicting
the future. arXiv preprint arXiv:1611.01779, 2016.

[3] C. Finn, I. Goodfellow, and S. Levine. Unsupervised learn-
ing for physical interaction through video prediction. In Ad-
vances in Neural Information Processing Systems, pages 64–
72, 2016.

[4] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

7

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[6] F. Leibfried, N. Kushman, and K. Hofmann. A deep learning
approach for joint video frame and reward prediction in atari
games. arXiv preprint arXiv:1611.07078, 2016.

[7] W. Lotter, G. Kreiman, and D. Cox. Deep predictive cod-
ing networks for video prediction and unsupervised learning.
arXiv preprint arXiv:1605.08104, 2016.

[8] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale
video prediction beyond mean square error. arXiv preprint
arXiv:1511.05440, 2015.

[9] V. Michalski, R. Memisevic, and K. Konda. Modeling deep
temporal dependencies with recurrent grammar cells””. In
Advances in neural information processing systems, pages
1925–1933, 2014.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[12] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh. Action-
conditional video prediction using deep networks in atari
games. In Advances in Neural Information Processing Sys-
tems, pages 2863–2871, 2015.

[13] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep
exploration via bootstrapped dqn. In Advances In Neural
Information Processing Systems, pages 4026–4034, 2016.

[14] M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert,
and S. Chopra. Video (language) modeling: a baseline
for generative models of natural videos. arXiv preprint
arXiv:1412.6604, 2014.

[15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein,
A. C. Berg, and F. Li. Imagenet large scale visual recognition
challenge. CoRR, abs/1409.0575, 2014.

[16] N. Srivastava, E. Mansimov, and R. Salakhudinov. Unsuper-
vised learning of video representations using lstms. In Inter-
national Conference on Machine Learning, pages 843–852,
2015.

[17] C. Vondrick, H. Pirsiavash, and A. Torralba. Anticipat-
ing the future by watching unlabeled video. arXiv preprint
arXiv:1504.08023, 2015.

[18] J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncer-
tain future: Forecasting from static images using variational
autoencoders. In European Conference on Computer Vision,
pages 835–851. Springer, 2016.

[19] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-
celli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image process-
ing, 13(4):600–612, 2004.

[20] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot,
and N. de Freitas. Dueling network architectures for deep
reinforcement learning. arXiv preprint arXiv:1511.06581,
2015.

[21] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale
structural similarity for image quality assessment. In Sig-
nals, Systems and Computers, 2004. Conference Record of
the Thirty-Seventh Asilomar Conference on, volume 2, pages
1398–1402. IEEE, 2003.

[22] J. Wu, I. Yildirim, J. J. Lim, B. Freeman, and J. Tenenbaum.
Galileo: Perceiving physical object properties by integrating
a physics engine with deep learning. In Advances in neural
information processing systems, pages 127–135, 2015.

[23] T. Xue, J. Wu, K. Bouman, and B. Freeman. Visual dynam-
ics: Probabilistic future frame synthesis via cross convolu-
tional networks. In Advances in Neural Information Pro-
cessing Systems, pages 91–99, 2016.

[24] H. Zhao, O. Gallo, I. Frosio, and J. Kautz. Loss functions
for neural networks for image processing. arXiv preprint
arXiv:1511.08861, 2015.

8

