
EE 368: DIGITAL IMAGE PROCESSING, STANFORD UNIVERSITY 1

Artistic Style Transfer
Elias Wang1, Nicholas Tan1

Abstract—We have shown that it is possible to achieve artistic
style transfer within a purely image processing paradigm. This is
in contrast to previous work that utilized deep neural networks to
learn the difference between “style” and “content” in a painting.
We leverage the work by Kwatra et. al. on texture synthesis to
accomplish “style synthesis” from our given style images, building
off the work of Elad and Milanfar. We have also introduced a
novel “style fusion” concept that guides the algorithm to follow
broader structures of style at a higher level while giving it the
freedom to make its own artistic decisions at a smaller scale.
Our results are comparable to the neural network approach,
while improving speed and maintaining robustness to different
styles and contents.

Index Terms—Style Transfer, Image Processing, Texture Syn-
thesis, Nearest Neighbor, Principal Component Analysis, Segmen-
tation Mask

I. INTRODUCTION

THE recent success of Convolutional Neural Networks
(CNNs) by Gatys et al. [4] in the Style-Transfer task

has generated renewed interest in the topic.

Fig. 1: Gatys shows that CNN’s can distinguish between style
and content

Furthermore, with the advent of new platforms such as
Snapchat and Instagram that create accessible avenues for art-
technology to the public, the problem has become all the more

1Department of Electrical Engineering, Stanford University, Stanford, CA

relevant to the scientific community. With the motivation of
reducing computational learning overhead as well as run time,
there has been subsequent work to capture the flavor of the
machine-learning process and differentiation between style and
content in terms of pure image processing. Our effort has been
in trying to improve the artistic quality of the style transfer
within this space.

II. RELATED WORK

One approach to style transfer is building off the related
area of texture synthesis. Texture synthesis aims to generate a
realistic texture image from a sample texture. In terms of the
style transfer task, we can think of the style as the texture we
are trying to mimic.

One successful texture synthesis algorithm was proposed
by Kwatra et al. [2], which is based on minimizing an energy
function. This method of global optimization is in contrast to
other techniques that use region-growing.

Fig. 2: Kwatra shows successful generation of various textures

Elad and Milanfar [1] adapted the ideas of Kwatra et al. to
style transfer. By first deriving an analogous objective function
for the energy minimization, then performing the optimization
in stages, patches from a style image can be robustly and
successfully mapped to regions in the content image, providing
pleasing artistic results.

An alternative approach of achieving style transfer is
through image component analysis, as demonstrated by Zhang
et al. [5]. This approach decomposes the content and style im-
ages into the draft, paint, and edge components, then the paint
and edge components of the content image are modified to
match those of the style image, and then finally the final image
is reconstructed from the new content image components.

III. METHODS

Our algorithm derives motivation from the recent work
of Elad and Milanfar [1], which derives several stages of



EE 368: DIGITAL IMAGE PROCESSING, STANFORD UNIVERSITY 2

optimization from an energy minimization point of view. We
adapt these stages, while providing our own implementation.

A. Overview

The core of the algorithm consists of six steps: style fusion,
patch matching, style synthesis, content fusion, color transfer,
and denoising. We apply this process for a series of decreasing
scales and patch sizes, allowing the algorithm to make broad
style transfers then progressively tune them. Each of these will
be described in more detail in the following subsections.

B. Terminology

Throughout this paper, we will refer to the series of energy
functionals from Elad’s work [1] in optimizing the texture
synthesis algorithm of Kwatra [2] for the application of style
transfer:

1

c

∑
(i,j)∈ΩL,n

min
(k,l)
‖Rn

ijX−Qn
klS‖r2+‖X−C‖2W +λ{X} (1)

Here:
X represents the estimated image
C represents the content image
S represents the style image
Rn

ij represents extraction of the i,j-th patch of size nxn
Qn

kl represents extraction of the k,j-th patch of size nxn
W represents a weight mask
L represents the working scale
r & c represent regularization/normalization factors
λ represents image prior statistics

Elad finds an algorithm that minimizes this cost function to
produce an image that balances style and content according to
a weight mask. Our approach builds off of this idea.

C. Initialization

Some pre-processing and initialization is done on the input
images (Figure 3) prior to running the algorithm.

Fig. 3: Left: Input content image. Right: Input style image

As a zeroth step, we assume (and ensure) for this work
that all input images are 400x400 pixels, with 3 RGB color
channels. However, this algorithm can be extended to images
of variable dimensions and properties, though this is not
discussed.

The first step is to apply a color transfer from the style
image to the content image. This color transfer process is also
used inside the algorithm and is described in Section III-H in
more detail.

Next, the estimated image is initialized to the resulting
content image plus strong Gaussian noise with zero mean and
a standard deviation equal to the maximum value of the new
content image (Figure 4).

Fig. 4: Left: Example of strong additive Gaussian noise (see
text) to ’house’. Right: Example of color transfer from ’Starry
Night’ to ’house’

The motivation for adding noise is to allow the patch
matching step to make more venturous guesses. Indeed, not
doing so will result in repeated patches (from the patch-
matching step), especially in areas of high uniformity (which
by definition are areas that contain similar patches) as shown
in Figure 5.

Fig. 5: Left: Example of patch matching on uniform white
image with no noise Right: Example of patch matching on
uniform image with added noise

Lastly, we generate a “hallucinated” image. This is an image
that is supposed to represent purely the style, with little to no
content. It is generated by running the described style transfer
algorithm on a significantly blurred content image (Gaussian
kernel, σ = 100), with a few minor alterations. Most notably,
we skip the style fusion and content fusion steps. These steps
do not apply since the style fusion depends on and uses the
hallucination image; and we are not concerned with preserving
the content while generating a hallucination. This image will
be used later in the algorithm during the style fusion step.

D. Style Fusion

In order to maximize the variability in the style transferred
while still keeping true to the content, we propose applying



EE 368: DIGITAL IMAGE PROCESSING, STANFORD UNIVERSITY 3

a weighted average between the estimated image and a hal-
lucinated image in each iteration. The weighting for the two
images can be adjusted as desired. For our implementation,
we selected relatively conservative values of 75% and 25%
for the estimated output and hallucinated images, respectively.

Fig. 6: Example of style fusion applied to ’Starry Night’
style image and ’house’ content image, noise initialization not
shown for clarity Left: Hallucinated image Right: Resulting
image

E. Patch Matching

The objective of patch matching is to extract areas of the
style image that mimic areas of the content image. To do this,
we first choose a patch in the content image that we want to
find a style-match for. Then, we perform a nearest-neighbor
(NN) search in the style image : we iterate through patches
in the style image and select the patch which has the lowest
L2-norm with respect to the content patch. The NN search can
be formulated as the following optimization problem,

{k∗, l∗} = Argmin
(k,l)
‖Rn

ijX −Qn
klS‖2 (2)

This process is computationally intense and it is optimized in
two ways.

First, we note that considering every possible patch of each
image (style and content) does not improve the quality of
the output image over skipping some patches. The reason is
that consecutive patches are similar to each other, so only
one patch out of a certain area is needed to contribute useful
information about the style of that area. Thus, we chose to
introduce a regular grid of overlapping patches from which
to choose our content and style patches. The reduction in
computation is proportional to the square of 1 + however
many pixels are skipped; in our case, we achieve, on average,
a 99.4% reduction. Since we were able to reduce the patch
space by a great margin without greatly compromising fidelity,
we decided to also include the three other major rotations of
each patch. Doing so gives the matching algorithm a more
diverse distribution of style patches to sample from, which
may decrease the minimal L2-norm of the selected style patch
in some cases.

Patch matching was also optimized with principal com-
ponent analysis (PCA). By projecting every possible patch
of the style image into a smaller space before computing
the norm, we greatly decrease the computational effort of
the minimization (with the trade-off of using more memory).

The basis (and dimension) of this projection space is chosen
from the eigen-vectors whose energy contribution is 95% of
the original total energy of the eigen-space of patches. The
remaining eigen-vectors do not store critical information in
differentiating style patches from each other, so they are not
considered. By performing PCA, we are able to decrease the
dimension of the original style patch space, on average, by
85%.

After calculating the L2-norm of each style patch to the
content patch, we add noise to each calculated metric asso-
ciated with a patch to allow the matching algorithm to make
venturous guesses during run-time. The Gaussian noise we
added had a standard deviation of 10% of what the minimum
L2-norm would have been. This level of noise was designed
so that we would choose a style patch from a similar range of
L2-norms.

Finally, we report the original patch in the style image that
corresponds to the chosen projected patch as most similar to
the given content patch (i,j) based on the L2-norm metric

zij = Qn
k∗,l∗S (3)

F. Style Synthesis

We now attempt to use the style patches, found using NN,
to estimate the output image. In essence, each i, j patch in
the output image should roughly match the corresponding
NN style patch, zij . This can be formulated as the following
optimization problem,

X̃ = Argmin
X

∑
(i,j)∈Ω

‖Rn
ijX − zij‖r2, (4)

which can be directly approximated using iterative re-weighted
least squares (IRLS), as used by Kwatra [2].

G. Content Fusion

To ensure that the original content is preserved, we use
a pixel-by-pixel weighted average of the content image and
the estimated style image. In areas where there is more
“content,” the weight will be heavier on the content image. In
areas where there is less “content,” the weight will favor the
estimated image. The pixel-by-pixel weight mask is calculated
by performing a series of segmentation algorithms on the
content image.

First, because the content is usually in the foreground of the
image, we assign the background of the content image a small
weight and the foreground a larger weight. The foreground /
background separation is achieved using active contour based
segmentation.

Next, because the edges of the content image contain the
most information in an image, we attribute a larger weight to
the edges of the content image. These edges were extracted
from the zero crossings of the Laplacian of Gaussian oper-
ation. Lastly, to make transitions between high content areas
and high-style areas smoother, we apply a Gaussian smoothing
to the mask. An example mask is shown in Figure 7.

Equation 5 is used to apply the content fusion and update
the estimate.



EE 368: DIGITAL IMAGE PROCESSING, STANFORD UNIVERSITY 4

Fig. 7: Example mask generated from “house” image

X̂ = (W + I)−1(X̃ +WC) (5)

Fig. 8: Left: Example X̃ , the style synthesis output before
content fusion. Right: Example X̂ after content fusion using
above mask

H. Color Transfer

The color palette of the final output image can be chosen
to be anything desired. For example, we could either keep the
color palette of the original content image or take the colors
from the style image. Since, the colors used in the style image
can be interpreted as part of the style, we chose the latter
approach. This also results in more visually pleasing results
since there is generally more diversity in the color palette of
the style image. In our implementation, we use the MATLAB
function, imhistmatch.

I. Denoising

The last step of the inner-most loop is to restore our image,
which has been heavily processed, to the prior statistics of a
general image. Indeed, we see artifacts of the patch selection
grid and content fusion edges in the output image. To mitigate
these effects, we choose a filter that smooths weak edges

and preserves strong ones - a bilateral filter, specifically the
Domain Transfer Filter [3].

J. Scale Space

In order to achieve a more diverse and robust style transfer,
the above procedure is applied to multiple resolution scales.
For a given patch size, the larger the scale (i.e. lower reso-
lution) we use, the larger the extracted features will be. As
discussed in [1], the various scales can be combined into
a single optimization problem. However, for simplicity, we
sweep over the scales sequentially, from coarsest to finest.

K. Patch size

Another way we can influence the scale of the style transfer
is by choosing different patch sizes. This has the added benefit
of smoothing the resulting patch grid artifacts as smaller
patches are designed to lie across the boundaries of the
larger ones. Additionally, by choosing different patch sizes,
we increase the variability in the distribution of patch choices
and increase the refinement of details in the style transfer.

In general, varying both the scale space and patch size will
offer the algorithm a diverse array of structures from different
scales and proportions from which it can sample for patch
matching.

IV. RESULTS

This section describes the results we obtain with the al-
gorithm, including a brief discussion of failure cases and
parameter selection.

A. Examples

Our algorithm obtains fairly robust style transfer for a
variety of different style and content images. A selected subset
is shown in Figure 9.

B. Failure Cases

This section will discuss conditions in which we have seen
our algorithm perform poorly and possible next steps for
mitigation.

1) Incompatible Style Image: One case where our algorithm
may not produce pleasing results is when the style image does
not provide a good representation of the style. This of course
is not well defined, but we have found that style images that do
not posses many colors or only have a small region of desired
style generally produce poorer results. Figure 10 shows an
example of this, where the style image is largely composed of
just two hues and most of the detail is located in the horse’s
head, which covers only a fraction of the image. As shown
in the resulting hallucinated and estimated image, there is a
lack of variety and results in mainly blotches of the two colors
present in the style image.

Another issue with certain style images is that if the style
inherently contains a lot of detail, PCA will not optimize it
as well as other styles. For example, in Starry Night, there
is a lot of fine high frequency variation seen in the sky that



EE 368: DIGITAL IMAGE PROCESSING, STANFORD UNIVERSITY 5

Fig. 9: Top: Content images, ’house’ and ’eagles’ Left: Style
images Middle: Style transfer results with ’house’ Right:
Style transfer results with ’eagles’

contributes to the style of the image. On the other hand, in
the case of Der Schrei (Scream), the style is smoother and has
less fine detail. Thus, we see close to a 2x computation speed
increase for the Der Schrei style image as compared to Starry
Night.

Fig. 10: Left: Style image Middle: Hallucinated image Right:
Estimated image

2) Incompatible Content Image: The most common failure
mode for incompatible content images is when our segmen-
tation does not successfully detect areas of relevant content.
Indeed, Elad details his encounter with the same problem [1].
For example, in images of human faces, our segmentation
algorithm interprets all smooth and uniform areas as content-
poor. Thus, the forehead and cheeks are assigned a low weight
in the mask, despite our intuition that they are key features
of the face, an area of high content. Eventually, because of
their low mask weight, these areas are populated with more
style. The juxtaposition of these highly styled areas against
other content-rich areas of the face with less style (such as
the eyes and mouth) is aesthetically strange as our minds
are conditioned to perceive the whole face as one entity. To
mitigate this, Elad has shown that it is possible to alter the
segmentation mask to get good results if the algorithm has
prior knowledge that the content image contains a face [1].

Fig. 11: Left: Mask for selfie image - note the blue (nominally
lower) areas of the forehead and cheeks Right: Final image
using segmentation mask on left

C. Parameter Selection Analysis

This section details our design of the parameter space and
how each parameter influences the resulting image

1) Patch Sizes: For the final algorithm, we have chosen
the patch sizes: 36x36, 22x22, and 13x13. The sizes of the
patches were designed so that we would get a broad spectrum
of structures from the style image while not compromising
on speed and memory usage. In general, decreasing a patch
size will increase the computation time because there will be
more matches to consider for NN. Additionally, with more
patches, we can eliminate grid artifacts that occur from the
choice of our patch shape. These artifacts are reduced because
each consecutive patch size was designed so that a patch
would exist above the previous patch’s grid line. An example
demonstrating the effect of different patch sizes is shown in
Figure 12.

2) Scales: Here we experiment with a combination of four
different scales (L = 1, 2, 4, 8), where a scale of L means that
the images are re-sized by a factor of 1/L. Looking at Figure
13, we see that larger structures start appearing when we reach
a scale of Lmax = 4. However, using a larger scale, Lmax = 8,
does not seem to offer much improvement. Therefore, in our
implementation we use scales L = 1, 2, 4. See Section III-J for
more details about how scale space is used in the algorithm.



EE 368: DIGITAL IMAGE PROCESSING, STANFORD UNIVERSITY 6

Fig. 12: Left: [36x36] patch size Center: [36x36,22x22] patch
sizes Right: [36x36,22x22,13x13] patch sizes

Fig. 13: Example output images using different number of
scales. Top-Left: L = 1 Top-Right: L = 1, 2 Bottom-Left:
L = 1, 2, 4 Bottom-Right: L = 1, 2, 4, 8

3) NN Noise: /Figure 14 demonstrates the effect of the
noise added in the NN search, which is essentially an ap-
proximate NN.

Fig. 14: Left: Example of patch matching on uniform white
image with no noise Right: Example of patch matching on
uniform image with 10% NN noise, see Section III-E

This little addition of variability makes each generated
image unique, even when given the same input content and
style images. This is demonstrated with hallucinated images
in Figure 15.

Fig. 15: Top: Example of hallucinated images with no NN
noise Bottom: Example of hallucinated images with 10% NN
noise

4) Hallucination Weight: By varying how much weight the
Hallucination has on the estimated image, we change how
much variation in style we see in the final output. For example,
with a hallucination weight of 0%, we see more random
styles being generated. Specifically, in the sky, we can see
yellow streaks that bend at angles not necessarily found in
starry night. However, with a hallucination weight of 50%,
we see style that has a better match with the broader swirling
structure of starry night. The reason for this is that, in the
0% hallucination case, the uniform areas are confined by the
boundary of the mask. This will limit the types of structures
that can exist in that area. On the other hand, using a greater
percentage of hallucination will perpetuate the larger structures
that are generated in the hallucination image, which, at the
time of its generation, was not limited by a mask (it skips the
content fusion step). To balance these two effects, we choose
a hallucination weight in the middle for our final algorithm.
We found that a weighting of 25% hallucination allows the
algorithm to generate its own style, while still maintaining the
broader structures of the style.

V. CONCLUSION

Our algorithm demonstrated results of similar quality to
those using CNNs in the work of Gatys [4], while using a more
image processing style approach. Conceptually, we use ideas
from Elad and Milanfar [1] for achieving style transfer through
the texture synthesis results of Kwatra et al. [2].The main
additions of our work are the inclusion of the hallucinated
image in the algorithm pipeline as well as the use of rotated
patches in the NN patch matching step. These allow us to gain
more variability and uniqueness in the images we produce,
a generally desired attribute. However, as noted in [1], what
constitutes a successful style transfer is not definitive. And



EE 368: DIGITAL IMAGE PROCESSING, STANFORD UNIVERSITY 7

Fig. 16: Top Left: 0% hallucination weight, Top Right: 10%
hallucination weight, Bottom Left: 25% hallucination weight,
Bottom Right: 50% hallucination weight

therefore, users may wish to tune the parameters differently
to suit their preferences.

A. Future Directions

One clear area of improvement is making the algorithm
robust to a greater range of style and content images. This
can be done by defining regions of the style image with a
richer selection of style and also having a better segmentation
process or removing the need for a mask in the algorithm.
While computational speed was not a primary concern during
the development of our algorithm, admittedly it can take from
approximately 10-20 minutes to generate an image (or about
half as long if a hallucinated image is provided or not used).
However, a combination of MATLAB and algorithmic opti-
mizations should be able to reduce the run-time significantly.

APPENDIX A
CODE

The GitHub repository containing the code can be found
here: https://github.com/ewang314/EE368 Final Project

ACKNOWLEDGMENT

We thank Professor Gordon Wetzstein for guidance in the
initial project formulation.

REFERENCES

[1] M. Elad, P. Milanfar, Style-Transfer via Texture-Synthesis, Google Re-
search, September 21, 2016

[2] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, Texture Optimization for
Example-Based Synthesis,ACM ToG, Vol. 24, No. 3, pp. 795-802, 2005

[3] E.S.L. Gastal and M.M. Oliveira, Domain Transform for Edge-Aware
Image and Video Processing, TOG, Vol. 30, No. 4, pp. 169, 2011.

[4] L.A. Gatys, A.S. Ecker, and M. Bethge, Image Style Transfer Using
Convolutional Neural Networks, CVPR, 2016.

[5] Zhang, Wei, Chen Cao, Shifeng Chen, Jianzhuang Liu, and Xiaoou
Tang. Style transfer via image component analysis IEEE Transactions
on Multimedia 15, no. 7 (2013): 1594-1601

https://github.com/ewang314/EE368_Final_Project

	Introduction
	Related Work
	Methods
	Overview
	Terminology
	Initialization
	Style Fusion
	Patch Matching
	Style Synthesis
	Content Fusion
	Color Transfer
	Denoising
	Scale Space
	Patch size

	Results
	Examples
	Failure Cases
	Incompatible Style Image
	Incompatible Content Image

	Parameter Selection Analysis
	Patch Sizes
	Scales
	NN Noise
	Hallucination Weight


	Conclusion
	Future Directions

	Appendix A: Code
	References

